Voronoi's algorithm in purely cubic congruence function fields of unit rank 1
نویسندگان
چکیده
The first part of this paper classifies all purely cubic function fields over a finite field of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1 and characteristic at least 5. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in a multiplicative cubic lattice, which is used for calculating the fundamental unit and regulator of a purely cubic number field.
منابع مشابه
Voronoi ' s Algorithm in Purely Cubic
The rst part of this paper classi es all purely cubic function elds over a nite eld of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function eld of unit rank 1 and characteristic at least 5. The technique is based on Voronoi's algorithm for generating a chain of successive minima in a multipli...
متن کاملVoronoi’s Algorithm in Purely Cubic Congruence Function Fields
The first part of this paper classifies all purely cubic function fields over a finite field of characteristic not equal to 3. In the remainder, we describe a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1 and characteristic at least 5. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in...
متن کاملUnit Computation in Purely Cubic Function Fields of Unit Rank 1
This paper describes a method for computing the fundamental unit and regulator of a purely cubic congruence function field of unit rank 1. The technique is based on Voronoi’s algorithm for generating a chain of successive minima in a multiplicative cubic lattice which is used for calculating the fundamental unit and regulator of a purely cubic number field.
متن کاملPurely Cubic Complex Function Fields With Small Units
We investigate several infinite families of purely cubic complex congruence function fields with small fundamental units. Specifically, we compute the fundamental units of fields K of unit rank 1 and characteristic not equal to 3 where the generator of K over Fq(t) is a cube root of D = (M3 − F )/E3 with E3 dividing M3 − F and F dividing M2. We also characterize all purely cubic complex functio...
متن کاملIdeal Arithmetic and Infrastructure in Purely Cubic Function Fields Ideal Arithmetic and Infrastructure in Purely Cubic Function Fields
This paper investigates the arithmetic of fractional ideals and the infrastructure of the principal ideal class of a purely cubic function eld of unit rank one. We rst describe how irreducible polynomials split into prime ideals in purely cubic function elds of nonzero unit rank. This decomposition behavior is used to compute so-called canonical bases of fractional ideals; such bases are very s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000